Matrix Sylvester equations in the theory of orthogonal polynomials on the unit circle
نویسندگان
چکیده
منابع مشابه
Rakhmanov's theorem for orthogonal matrix polynomials on the unit circle
Rakhmanov’s theorem for orthogonal polynomials on the unit circle gives a sufficient condition on the orthogonality measure for orthogonal polynomials on the unit circle, in order that the reflection coefficients (the recurrence coefficients in the Szegő recurrence relation) converge to zero. In this paper we give the analog for orthogonal matrix polynomials on the unit circle. 1. Rakhmanov’s t...
متن کامل2 00 2 A connection between orthogonal polynomials on the unit circle and matrix orthogonal polynomials on the real line
Szeg˝ o's procedure to connect orthogonal polynomials on the unit circle and orthogonal polynomials on [−1, 1] is generalized to nonsymmetric measures. It generates the so-called semi-orthogonal functions on the linear space of Laurent polynomials Λ, and leads to a new orthogonality structure in the module Λ × Λ. This structure can be interpreted in terms of a 2 × 2 matrix measure on [−1, 1], a...
متن کاملOn the numerical solution of generalized Sylvester matrix equations
The global FOM and GMRES algorithms are among the effective methods to solve Sylvester matrix equations. In this paper, we study these algorithms in the case that the coefficient matrices are real symmetric (real symmetric positive definite) and extract two CG-type algorithms for solving generalized Sylvester matrix equations. The proposed methods are iterative projection metho...
متن کاملAnalogs of the m-function in the theory of orthogonal polynomials on the unit circle
We show that the multitude of applications of the Weyl–Titchmarsh m-function leads to a multitude of di4erent functions in the theory of orthogonal polynomials on the unit circle that serve as analogs of the m-function. c © 2004 Elsevier B.V. All rights reserved.
متن کاملAsymptotics of derivatives of orthogonal polynomials on the unit circle
We show that ratio asymptotics of orthogonal polynomials on the circle imply ratio asymptotics for all their derivatives. Moreover, by reworking ideas of P. Nevai, we show that uniform asymptotics for orthogonal polynomials on an arc of the unit circle imply asymptotics for all their derivatives. Let be a nite positive Borel measure on the unit circle (or [0; 2 ]). Let f'ng denote the orthonor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Belgian Mathematical Society - Simon Stevin
سال: 2010
ISSN: 1370-1444
DOI: 10.36045/bbms/1274896211